

TS-SW3002S4 TS-SW2502S4 TS-SW2002D2

## **CAR-USE COMPONENT SUBWOOFER**

1500wmx./nom.400w 1200wmx./nom.300w 600wmx./nom.150w

Be sure to read this instruction manual before installing this speaker.

#### **AWARNING**

The sealed enclosure series subwoofers are capable of reproducing music at extremely loud levels. Caution should be exercised to prevent permanent hearing loss. Additionally, driving with the system at high volume levels could impair your ability to hear emergency vehicles.

#### **CAUTION**

\*Toprevent damage toyour speakers please observe the following caution.

- At high volume levels if the music sounds distorted or additional sounds era perceived lower the volume.
- PIONEER recommends that this speaker be used in conjunction with amplifiers whose continuous (RMS) output is lower than the nominal input power of this speaker.

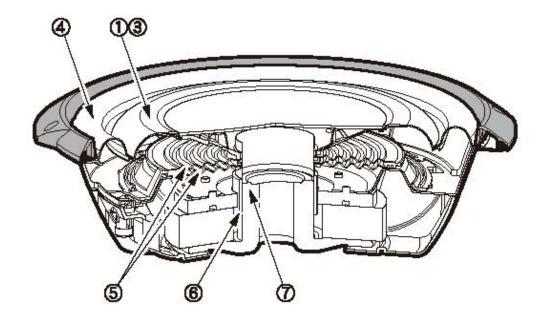
Since this speaker is continuously used being turned on full blast, temperature of tha magnetic circuit rises, avoid touching it directly by hand and placing something near it. If it is heated, it may cause a burn, deformation ofor damage to peripheral things.

#### (T-SW3002S4, TS-SW2502S4)

/ this product is used in free-air conditions (without an enclosure), insufficient damping causes the sound without accuracy and reduces the power handling capability to 1/4 of its usual levels. It may result in permanent damage to the product.

#### (TS-SW2002D2)

- Nevar connect only one voice coil of this Dual Voice Coil (DVC) speaker.
- B voice coils must be connected to the amplifier for correct operation.


#### APPLICABLE FOR FREE AIR USE

(Only for 2002D2

The TS-SW2002D2 is also capable for FREE AIR use, for applications such as rear deck mounting in a sedan.

OEM-FIT allows the TS-SW2002D2 shallow subwoofer to fit into many OEM subwoofer location and can be integrated with the OEM amplifier or connected to a more powerful aftermarket amplifier.

- OEM-friendly mounting holes fit a wide variety of OEM subwoofer mounting types.
- Shallow basket design minimizes the need to modify theOEM subwoofer enclosure.
- Dual 2-0hm voice coil can be wired to match the impedance of most OEM subwoofers.
- \* OEM (Original Equipment Manufacturing) = Factory / equipment

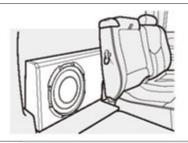


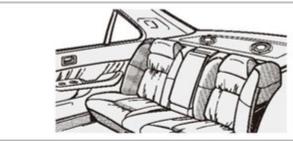
#### FEATURES

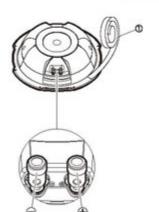
- 1. OVER SIZED CONE (TS-SW3002S4 TS-SW2502S4): The unique oversized cone structure provides greater cone and gasket surface without changing its standard external dimension. This larger cone area allows the subwoofer to produce deeper and powerful bass.
- 2. OEM-FIT (TS-SW2002D2): TS-SW2002D2 shallow subwoofers with OEM-FIT design can be used for OEM audio system replacements or upgrades.
  - \*OEM (Original Equipment Manufacturing) = Facto ftt / equipment
- 3. MICA REINFORCED IMPP CONE: This highly rigid cone structure made with Mica injection-molded resin creates a stiff and durable cone, which produces accurate bass with minimal distortion. The bonding process of reinforced pulp to the cone's back side makes / capable of achieving clean and accurate bass response by allminating excess vibrations.
- 4. DUAL LAYER, FIBER REINFORCED ELASTIC POLYMER SURROUND: Precisely controls the huge power handling and extended excursion, resulting in louder, more controlled bass response with improved durability.
- DUAL SPIDER: Using twodempers provides cone motion control for optimized stiffness; this stabilizes the excursion and supports the subwoofer's linear movement.
- 6. 4-LAYER, LONG VOICE COIL DESIGN: High power and long excursion capability for deeper, louder, more impactful bass.
- 7. VENTED AND PROJECTED POLE YOKE DESIGN: allows for better heat dissipation, increased power handling and greatly improves linearity during large excursions by expanding the magnetic field.

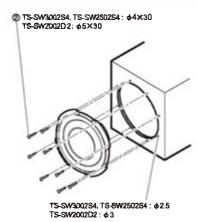
### SPECIFICATIONS

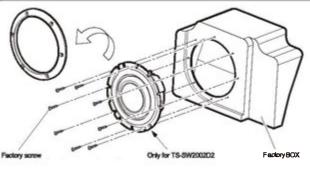
| Model            | Size | Nominal<br>8. 8.r<br>4 | Maxmusic power | Nominal impedance | Sensitivity                      | Fre uenc response                               | Ma let weight | Displacement |  |
|------------------|------|------------------------|----------------|-------------------|----------------------------------|-------------------------------------------------|---------------|--------------|--|
| TS-<br>SW30025 4 |      | 400W                   | 1500W          | 4 Ω               | 93dB ±1.5dB<br>(in 6.r,input:1W) | 20 Hz To 125 Hz<br>( — 20dB in car, input: 1 W) | 2030g         | 1.11 liters  |  |
| TS-SW2502S4      | 25om | 300W                   | 1 2 00 W       | 4 Q               | 91 dB ±1.5dB<br>(in &r,input:1W) | 20 Hz To 125 Hz<br>(-20dB in car, input: 1 W)   | 1 030g        | 0.6S liters  |  |
| TS-<br>SW2002D2  | 20om | 150W                   | 600W           | dual 2 Q          | 86dB ±1.5dB<br>(in &r,input:1W)  | 20 Hz To 200 Hz<br>(-20dB in car, input: 1 W)   | 840 g         | 0.44 liters  |  |


| Model           | Revo     | Levc                   | Fs   | Qms   | Qes  | Qts  | Vas      | Rms     | Mms | Cms                  | Diam | BL                     | Xmax    |
|-----------------|----------|------------------------|------|-------|------|------|----------|---------|-----|----------------------|------|------------------------|---------|
|                 | (Ω)      | (mH)                   | (Hz) |       |      |      | (liters) | (N.S/m) | (g) | (m/N)                | (mm) | (T.m)                  | (mm)    |
| TS-<br>SW3002S4 | 3        | 2.27                   | 35   | 13.95 | 0.64 | 0.61 | 4        | 4.29    | 243 | 8.5×10 <sup>-6</sup> | 271  | 17.0                   | 8.<br>8 |
| T SW2502S4      | 3        | 1.91                   | 42   | 12.04 | 1.06 | 0.97 | 18.5     | 3.79    | 171 | 8.2×10 <sup>-6</sup> | 225  | 12.0                   | 8.<br>5 |
| TS-<br>SW2002D2 | dual 1.5 | 1.08(4 Q)<br>0.27 (1Q) | 65   | 5.23  | 1.20 | 0.98 | 3.8      | 7.08    | 90  | 6.6×10 <sup>-6</sup> | 160  | 10.0 (4 Ω)<br>5.0(1 Ω) | 2 8     |


# DVC (DUAL VOICE COIL) CONNECTION


Only for TS-SW2002D2 2D2


| Connection                     | Speaker witing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Advantage                                                                           |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|
|                                | 7.000 - 7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 150                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
| 2 Q Bridged mono (Parallei)    | 4º Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Good for higher sensivity                                                           |
|                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Q DVC : 4 Q               |                                                                                     |
| 1Qor4Q Stereo                  | 1 Q or 4 Q Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                                                                     |
| 12014D Stereo                  | - CONTRACTOR OF |                             | Good for higher sensivity Good for channel separation                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ⊕ € 2 € DVC:4 € 2 € DVC:1 € |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 DVC:40 20 DVC:10         |                                                                                     |
| 1 Ω or 4 Ω Bridged mono        | 1 Ωor 4Ω Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Good for higher sensivity                                                           |
| 1 Codes 4 C Thosh-dielder mone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Good for higher sensivity                                                           |
|                                | 4 Ω or 1 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 200                       |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (O) (O)                     |                                                                                     |
| 1 Ом или 4 Ом                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 (86)                      |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Q DVC : 4 Q 2 Q DVC : 1 Q | Notice : Verify that your amplifier can operate in a 1 Ω or 4 Ω mono configuration. |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                     |


## ● HOW TO INSTALL



